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The optimal non-modal perturbations for the neutrally stratified boundary layer in a
rotating frame of reference (Ekman layer) are found for a Reynolds number
characteristic of the planetary boundary layer (PBL). Two classes of non-modal
instabilities are found: evanescent perturbations, with lifetimes up to about one hour,
and growing instabilities. The important difference between these types of pert-
urbations is whether or not the optimal non-modal perturbation projects onto an
unstable normal mode. The evanescent instabilities are of smaller scale and are
oriented at larger angles to the surface isobars compared to either the growing
perturbations or normal-mode instabilities. The optimal perturbations take the form
of vortices at an acute angle to the geostrophic flow that rapidly transform into streaks
with associated overturning motion. The energetics of the optimal perturbations are
investigated in detail to clarify the instability mechanism throughout its evolution.

Nonlinear stability analyses of the neutrally stratified Ekman layer have shown that
the normal-mode instability will equilibrate with the mean flow to form boundary-
layer-scale equilibrium roll eddies aligned closely with the geostrophic flow. However,
numerical simulations do not generate these rolls in neutral stratification although they
often realize small-scale near-surface streaks oriented at large angles to the geostrophic
wind. The evanescent optimal perturbations bear a close resemblance to the simulated
streaks. It is proposed that the non-model perturbation mechanism is associated with
the streaks.

1. Introduction

In the midlatitudes the portion of the atmospheric planetary boundary layer (PBL)
which occupies the region between 10–100 m and 1–2 km above the surface is called the
Ekman layer. The classic Ekman profile is an exact solution of the Navier–Stokes
equations for the steady three-way balance between the pressure gradient, Coriolis
and frictional forces assuming a constant kinematic viscosity. In neutral barotropic
conditions the horizontal mean wind forms a logarithmic spiral that has both
directional and speed shear, is directed towards low pressure near the surface and is
geostrophic (two-way balance between pressure gradient and Coriolis forces) above
the boundary layer. The PBL is usually fully turbulent, so the Ekman solution is used
as a paradigm mean flow for analytic purposes under the assumption that the Reynolds
stresses can be modelled using an eddy viscosity.

Observations, numerical models and theoretical analyses have shown that the
Ekman layer frequently contains persistent organized counter-rotating roll vortices
that are approximately aligned with the mean wind and span the depth of the boundary
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layer is near-neutral to moderately unstably stratified conditions (for details, see the
comprehensive reviews by Etling & Brown 1993 and Brown 1980). The spacing
between the roll updraughts roughly scales as multiples of the PBL depth (usually
double) and is generally 1–5 km. These rolls are coherent structures embedded in the
turbulent mean flow which produce an advective and non-local transport of momentum
and scalars that mixes the PBL more efficiently than local diffusion. A common
interpretation of the action of the quasi-two-dimensional rolls on the PBL is that they
form a mean secondary circulation that organizes the smaller-scale fully three-
dimensional turbulent eddies into linear patterns. Thus, when rolls are present, the
PBL is quite inhomogeneous.

The presence of rolls is often apparent in satellite images of boundary layer ‘cloud
streets ’ aligned in rows spaced several kilometres apart that can persist in the
downwind direction for hundreds of kilometres and can last for days. Clouds form in
the updraught regions between the rolls if the thermodynamic conditions are
favourable. However, the rolls are often present in cloud-free conditions as has been
demonstrated, for example, in satellite-borne synthetic aperture radar (SAR) images of
the sea surface in cloud-free conditions. The SAR image is formed from radar
backscatter off the centimetre-scale surface capillary waves which has been empirically
related to the wind-driven sea surface stress. Regions of enhanced or reduced surface
stress associated with the rolls form linear streaks in the SAR images with orientations
and spacings that match those of PBL rolls (Thomson, Liu & Weissman 1983; Gerling
1986; Alpers & Brummer 1994; Mourad & Walter 1996). Coincident SAR and cloud
street images show that they are different visualizations of the same phenomena.

Rolls are assumed to be caused by instabilities that form in the PBL and then
equilibrate with the mean flow to form a mean secondary circulation (e.g. Faller 1965).
Standard linear stability analyses for the constant-eddy-viscosity Ekman layer have
been performed for a variety of PBL conditions: for example neutral, barotropic by
Lilly (1966) and Leibovich & Lele (1985), stratified by Etling (1971) and stratified
baroclinic by Foster (1995). Linear and nonlinear initial value calculations were
performed by Faller & Kaylor (1966) and Kaylor & Faller (1972). A consistent picture
has emerged from these studies regarding the behaviour of the linear instabilities.

The unstable normal mode in these analyses predicts the roll scale (instability
wavelength) and orientation angle relative to the surface isobars fairly well. Unstable
stratification tends to decrease the wavelength slightly and to align the rolls more
closely with the surface isobars as compared to neutral stratification. Stable
stratification tends to increase the angle with the surface isobars. The linear instabilities
are damped out in slightly stable stratification. Baroclinic effects produce asymmetric
modifications over and above the stratification effects and decrease (increase) the
normal mode wavelength in cold (warm) advection and increase (decrease) the
orientation angle in cold (warm) advection.

Simple nonlinear analyses by Brown (1970, 1972) and Haack & Shirer (1992) give
reasonable predictions of the secondary flow velocities and approximations to the roll-
induced modification to the Ekman layer. Faller & Kaylor (1966) and Kaylor & Faller
(1972) performed nonlinear integrations of normal-mode perturbations which give
better estimates of the equilibrium roll structures. The nonlinear evolution of Ekman
layer instabilities has been investigated by Foster (1996). The first 16 Landau
coefficients are calculated and stable equilibrium solutions are found to exist for
Reynolds number Re at least as high as 1000. Another nonlinear analysis by Mourad
& Brown (1990) shows that the perturbation energy can be transferred between scales
by interacting resonant triads of instabilities that begin as normal modes. This was
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used to explain observations of coincident multiple roll scales in cold air outbreaks.
Apparently, normal-mode stability analysis has been quite useful in the study of PBL
rolls.

Neutrally stratified low-Re laminar flows in the laboratory agree with the linear
analyses up to ReC 200. At higher Re, equilibrium rolls are seldom realized (Faller &
Kaylor 1966). Numerical simulations of higher-Re flows in neutral stratification have
also not confirmed the theoretical results. Thus, equilibrium roll circulations are not
found in conditions where stability theory predicts they would. However, these
simulations often realize transient streaky structures of smaller scale and at larger
angles to the surface isobars than those predicted for the rolls. This discrepancy has
been the subject of much debate in the field and is a motivation for this paper.

Classical hydrodynamic linear stability theory is based on an eigenvalue (normal-
mode) analysis of the linearized equations of motion, the thermodynamic energy
equation and the continuity equation and centres on the characteristics of the fastest
growing normal mode. A flow is deemed unstable if there exists a normal mode with
a positive growth rate for the given mean conditions. In neutral stratification, the basic
mean flow parameter is the Reynolds number, Re. The minimum Re for which the flow
is unstable is the critical Reynolds number, Re

c
. It is assumed that there are fluctuations

in nature that will provide an initial perturbation at the wavelength of the most
unstable mode which will then proceed to grow faster than any other normal mode and
dominate the instability as long as nonlinear effects remain unimportant. Nonlinear
effects will either instigate a transition of the flow to disorganized turbulence or allow
the perturbation to modify the mean flow enough to create an equilibrium secondary
circulation that resembles the unstable normal mode. If the flow is turbulent, this
secondary flow is a type of turbulent coherent structure.

Linear theory has been successful in predicting transitions in some fluid systems such
as Be!nard convection and Taylor–Couette flow. However, the method has failed when
applied to certain other canonical solutions such as pressure-driven plane channel
(Poiseuille) and circular pipe (Hagen–Poiseuille) flows. Linear stability analysis
predicts stability up to Re

c
¯ 5772 for plane Poiseuille flow and that pipe flow is

linearly stable for all Re. However, experiments have found that plane Poiseuille flow
can undergo a transition to turbulence at ReC 1000 and pipe flow at ReC 2000.

Recently, non-modal initial perturbations have been shown to have the potential for
large transient energy growth compared to modal perturbations for a variety of mean
flows (Farrell 1988; Butler & Farrell 1992; Reddy, Schmid & Henningson 1993;
Schmid & Henningson 1994). This transient growth provides a possible explanation for
observations of ‘bypass ’ transition to turbulence in subcritical plane Poiseuille and
Hagen–Poiseuille flows. The non-modal stability analysis is based on the fact that for
most flows the linear stability equations are not self-adjoint which means that the
eigenfunctions are not orthogonal. We can consider expanding an arbitrary initial
perturbation of unit energy using the eigenfunctions (each normalized to have unit
energy) as a basis set. Because the basis set is not orthonormal, we will in general have
an initial cancellation of contributions between certain combinations of eigenfunctions.
If some eigenfunctions are nearly parallel, their expansion coefficients could have
relatively large absolute values. However, because the contributions from the different
eigenfunctions grow or decay at different rates and have different phase velocities, the
initial cancellation of the contributions from nearly parallel eigenfunctions will be
removed as time progresses. This could allow transient growth in the energy of the
perturbation. This transient growth can occur in subcritical conditions for which no
eigenvalue has a positive growth rate. In supercritical conditions, this transient growth
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can greatly exceed the exponential growth of the unstable normal mode over a finite
time interval.

The non-self-adjoint character of the linear stability equations for the Ekman layer
allows transient non-modal perturbations as valid solutions to the system. Normal-
mode stability analysis is applicable for asymptotic times while the transient growth
occurs at times near zero. If the transient growth is sufficiently large, the flow may
become nonlinear before the normal mode has a chance to dominate the solution. This
is an important point since study of the PBL rolls and their effect on the mean flow is
a nonlinear problem and an initial linear state is needed as a basis for analytic
nonlinear analysis. Nonlinear stability analyses assume that the nonlinear effects can
be found by expanding around a linear instability that has the same initial shape as the
most unstable normal mode (Herbert 1983).

We are left with the following question: Does the most unstable normal mode have
time to dominate the instability before nonlinear effects become important? This paper
considers the transient growth of optimal perturbations in a neutral barotropic Ekman
layer. The optimal perturbation is defined here as the initial condition that achieves the
maximum energy norm (to be defined below) at a given time. The optimal perturbations
and their temporal development are compared to the unstable normal mode for the
same conditions. A subset of the optimal perturbations is found to have the same
characteristics as the streaks found in numerical simulations. It is proposed that similar
perturbations are associated with the streaks and might inhibit the formation of
equilibrium rolls in some situations.

2. Analysis methods

Here we present the equations for the mean and perturbation flows and the relevant
non-dimensional parameters. This is followed by an outline of the linear stability
problem, the analysis techniques and the numerical methods employed to examine the
optimal perturbations. These are included in the body of this paper since the non-
normality of the stability operator has important effects on the numerical solutions and
because the existence of a continuous spectrum of normal modes complicates the
analyses.

2.1. Ekman layer mean flow

The Ekman layer solution is used to define the PBL mean flow and its derivation can
be found in standard textbooks, e.g. Sorbjan (1989). In a coordinate system aligned
with the surface geostrophic wind and non-dimensionalized with the surface
geostrophic wind magnitude, G and the Ekman layer e-folding depth, δ¯ (2K}f )"/#,
the horizontal mean flow is

U
E

¯ 1®e−z cos z, (2.1)

V
E

¯ e−z sin z, (2.2)

where z is the vertical coordinate, K is a constant eddy viscosity, f¯ 2Ω sinΛ is the
Coriolis parameter, Ω is the rotation rate and Λ is the latitude. The surface geostrophic
wind is the fictional wind parallel to the surface isobars that would balance the surface
pressure gradient and Coriolis forces. The top of the PBL is at zC 5. The use of a
constant eddy viscosity in the PBL is discussed in Faller (1965), Brown (1981) and
Brown & Foster (1994). Faller uses similarity theory to argue that the eddy viscosity
in the neutral PBL should be approximately constant. Brown (1981) and Brown &
Foster (1994) argue that the use of a constant eddy viscosity for the smaller-scale
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turbulent eddies is permissible if an additional ‘bookkeeping’ of the effects of large-
scale eddies such as rolls is included. In this paper, we are implicitly assuming that the
eddy viscosity is characteristic of the small-scale turbulent eddies prior to their
organization by the larger-scale eddies associated with instabilities of the Ekman layer.

2.2. Perturbation equations

The linear stability equations are obtained in the usual manner from the equations of
motion and the continuity equation. As discussed in Leibovich & Lele (1985), a scale
analysis shows that while the tangential Coriolis force should be omitted in the mean
flow equations, it can be significant in the perturbation-scale equations, especially at
lower Reynolds numbers. The boundary conditions require all the perturbations to
vanish at z¯ 0 and either to vanish or remain bounded as zU¢. Eigensolutions that
vanish as zU¢ are the discrete normal modes while those that oscillate are elements
on the continuous spectrum of normal modes. The perturbation equations are non-
dimensionalized using G as the velocity scale, δ as the length scale and ρ

!
G# as the

pressure scale. It can be shown that using a rotational time scale (2}f ) yields the same
results as for the advective time scale (δ}G). We choose the advective time scale.

The axes of the coordinate system are oriented so that the y-derivative of the
perturbations vanishes and the x-axis is directed along the instability wave vector.
Several angles need to be defined: ξ is the angle of the surface geostrophic wind from
the east, β is the angle of the roll axis from the east and ε is angle of the roll axis from
the surface geostrophic wind (figure 1a). In this coordinate system, the instability
wavenumber is α¯ (k#

x
­k#

y
)"/# where k

x
and k

y
are the wavenumbers in the east–west,

north–south coordinate system. This rotation is equivalent to Squire’s transformation.
When the Ekman mean flow is expressed in this coordinate system, a different mean
flow profile enters the calculation for each value of ε (figure 1b). Thus, for each set of
mean flow parameters we must survey both α and ε when searching for either the fastest
growing normal mode or the optimal initial condition.

We assume that the perturbations are of the form

u(x, z, t)¯ uh (z, t) eiαx, (2.3)

and the linear perturbation equations are

9 ¥¥t­iαU®
1

Re
(D#®α#): uh ­wh U «­iαph ®

1

Ro
(�h ­A

"
wh )¯ 0, (2.4)

9 ¥¥t­iαU®
1

Re
(D#®α#): �h ­wh V «­

1

Ro
(uh ®A

#
wh )¯ 0, (2.5)

9 ¥¥t­iαU®
1

Re
(D#®α#):wh ­Dph ­

1

Ro
(A

"
uh ­A

#
�h )¯ 0, (2.6)

iαuh ­Dwh ¯ 0, (2.7)

where A
"
¯ sinβ cotΛ ; A

#
¯ cosβ cotΛ, D and primes denote z-derivatives. The

following definition is used for the Reynolds number and Rossby number (Ro) :

Re¯
Gδ

K
¯ 2

G

fδ
¯ 2Ro. (2.8)

Typical values of δ are 100–500 m; Re ranges from 100 to 1000. The terms multiplied
by A

"
and A

#
couple the momentum equations through the tangential Coriolis force.
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F 1. (a) Coordinate system. (b) Ekman layer mean flow for ε¯ 29.5° and 19.3° corresponding
to the optimal perturbations for τ¯ 15 and 75 respectively. The solid lines are the cross-stream mean
flow (U ) and the dashed lines are the downstream mean flow (V ). The horizontal dashes on the cross-
stream velocity mark the inflection point heights. The vertical lines indicate the free-stream
geostrophic velocities.

All of the Coriolis couplings are relatively weak compared to the coupling of the
overturning (u and w) motions through the perturbation pressure. Thus, the
downstream perturbation flow (�) is largely decoupled from the overturning flow. To
simplify this analysis we choose A

"
¯A

#
¯ 0.

2.3. Eigen�alue problem

Pressure can be eliminated from the sixth-order system (2.4)–(2.7) by combining the
overturning motion equations (2.4) and (2.6) into an equation for the streamfunction,
ψ, where u¯ ¥ψ}¥z and w¯®iαψ. The standard linear stability problem assumes that
the instabilities are of the separable form ψ(x, z, t)¯ψW (z) eλt eiαx where λ¯σ®iω is the
eigenvalue. The perturbation grows exponentially with growth rate σ and has
frequency ω. The eigenfunction is qW ¯ (ψW (z), �W (z))T.

Previous eigenvalue studies on the Ekman layer have shown that there are two kinds
of instabilities. The ‘parallel ’ mode appears first at ReC 54 (if the tangential Coriolis
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force is omitted). This mode is oriented at εC®15° (towards high pressure) and
extracts its energy from the downstream shear production terms and couples it into the
overturning motion through the Coriolis terms. Because the Coriolis coupling scales as
Re−" no apparent peak in contours of the growth rate associated with this mode can
be seen when ReC 200 because of the emergence at ReC 113 of a much faster growing
instability, the ‘ inflection point ’ mode which has been associated with the PBL rolls.
This mode extracts its energy from the cross-stream shear production and occurs at
εC 15°–20° with αC 0.5.

2.4. Non-modal instabilities

The theory for non-modal instabilities has been presented rigorously by Farrell (1988) ;
Butler & Farrell (1992) ; Reddy & Henningson (1993) ; Reddy et al. (1993) ; and Schmid
& Henningson (1994). Central to these theories is the definition of the size or norm of
the instability which must incorporate contributions from all components of the
solution. For this analysis we choose the kinetic energy norm to measure the
perturbation growth.

The eigenfunction expansion technique described in Schmid & Henningson (1994) is
applied. Special attention is paid to the difficulties associated with the contributions
from the continuous spectrum of normal modes which were not part of previous
studies. We assume that any solution, q, to the system of equations (2.4)–(2.7) can be
written as an eigenfunction expansion:

q(x, z, t)¯ 9ψ� :¯ eiαx 3
N

n="

k
n
(t) 9ψW (z)�W (z) :

n

¯ eiαx 3
N

n="

k
n
(t)qW

n
(z), (2.9)

in which the eigenfunctions are ordered in terms of decreasing growth rate, σ
n
, and the

solution is completely determined by the vector of expansion coefficients, k. The value
of N remains to be determined.

There is a finite number of discrete normal modes and a continuous spectrum of
normal modes for the Ekman layer stability problem. An exact solution would require
N to equal the number of discrete normal modes and an additional integral over the
continuous spectrum would need to be included. The spectral numerical solution finds
a finite number of eigenfunctions. Some of these are the discrete normal modes but the
majority are discrete representations of elements of the continuous spectrum. The
normal modes on the continuous spectrum have negligible contributions in the high-
shear regions near the surface and are most significant above the PBL. As in the
analysis of the Blasius boundary layer described in Butler & Farrell (1992) we assume
that the optimal perturbations will be mainly composed of contributions from the
discrete normal modes which are mainly significant in the PBL. We can treat the
discrete representations of the continuous spectrum as if they are discrete normal
modes and include them in the summation. Thus, N will be determined by numerical
experimentation varying the spectral resolution used to solve the eigenvalue problem
and the range of growth rates included in the eigenfunction expansion (2.9). Previous
studies (Schmid & Henningson 1994 and Reddy et al. 1993) have found that N can be
much less than the number of eigenfunctions in the linear stability solution, which
results in a substantial decrease in the computer time required to perform the non-
modal analysis. In what follows we will not distinguish between the exact equations
and their discrete approximations. This relationship is explored in Reddy et al. (1993)
and Schmid & Henningson (1994).
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2.4.1. Energy and amplitude norms

We define an inner product (q
i
,q

j
)¯ !¢

!
q
j

†q
i
dz where the † superscript denotes the

Hermitian adjoint (complex conjugate transpose). The amplitude or 2-norm of q is the
square-root of the inner product of q with itself and measures the amplitude of the
instability :

(q,q)¯ sqs#

#
¯&

¢

!

[rψr#­r�r#] dz. (2.10)

Similarly, the energy norm is defined as

sqs#
E

¯&
¢

!

(rψ
z
r#­α#rψr#­r�r#) dz, (2.11)

where the definition of the energy inner product is

(q
i
,q

j
)
E

¯&
¢

!

0¥ψ
†

j

¥z
¥ψ

i

¥z
­α#ψ

j

†ψ
i
­�

j

†�
j1dz. (2.12)

The eigenfunction expansion (2.9) (with the eigenfunctions normalized to have unit
energy norm) may be combined with (2.11) and (2.12) to give an expression for the
energy norm of a perturbation:

sqs#
E

¯ (q,q)#
E

¯&
¢

!

3
N

m

k
m

†3
N

n

k
n 9¥ψ

W †

m

¥z
¥ψW

n

¥z
­α#ψW

m

†ψW
n
­�W

m

†�W
n:dz. (2.13)

This may be written in matrix form as

sqs#
E

¯k †Mk, (2.14)

where M is the N¬N positive definite Hermitian matrix (with ones along the diagonal)
whose elements are constructed from the energy inner products between the normalized
eigenfunctions:

M
mn

¯&
¢

!

9¥ψW
†

m

¥z
¥ψW

n

¥z
­α#ψW

m

†ψW
n
­�W

m

†�W
n:dz. (2.15)

Note that if the stability problem was self-adjoint, M would be the identity matrix. Any
positive definite Hermitian matrix has an N¬N matrix square root, F, defined as
F †F¯M. This allows us to relate the energy norm of q to its related 2-norm as
follows:

sqs#
E

¯k †Mk¯k †F †Fk¯ sFks#

#
. (2.16)

It is straightforward to extend the definition of an energy norm from vectors to
matrices. The 2-norm of a matrix, A, is the maximum possible relative increase in
amplitude of any non-zero vector, x, that A multiplies : sAs

#
¯Max sAxs

#
}sxs

#
.

Similarly, we define the energy norm of A as the maximum possible relative increase
in energy of any non-zero vector and use (2.16) to relate the matrix energy norm to the
matrix amplitude norm:

sAs
E

¯Max
sAxs

E

sxs
E

¯Max
sFAxs

#

sFxs
#

¯Max
sFAF−"Fxs

#

sFxs
#

¯ sFAF−"s
#
. (2.17)
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The amplitude norm of a matrix is computationally useful since it can be found using
singular value decomposition (SVD) which is available in standard linear algebra
software packages.

2.4.2. Transient growth

It is possible to rewrite the system of equations (2.4)–(2.7) in matrix form to get the
general system of differential equations:

¥q
¥t

¯Cq, (2.18)

where C is the matrix representation of the spatial terms in (2.4)–(2.7). The linear
stability (eigenvalue) problem may then be written as

CQq ¯Qq Λ, (2.19)

where Q is the matrix with the eigenvectors as columns and Λ¯diag (λ
"
,λ

#
,…,λ

N
) is

the diagonal matrix of eigenvalues sorted by decreasing growth rate. If we substitute
the eigenfunction expansion (2.9) and (2.19) into (2.18) we find:

k¯ eΛtk
!
, (2.20)

where k
!

is the vector of expansion coefficients that defines the initial perturbation.
Equation (2.20) is an expression for the evolution of arbitrary disturbances. The

contribution of each eigenfunction, qW
j
, to the solution grows from its initial value, given

by k
!j
, at its normal-mode growth rate, σ

j
. The fastest growing discrete normal mode

will determine the evolution at late times. The transient growth occurs because the
initial cancellation of contributions between the non-orthogonal eigenfunctions is lost
as the expansion coefficients grow or decay at different rates and propagate at different
velocities. We have already assumed that the initial condition has unit energy norm.
Thus, the maximum possible transient energy growth in the perturbation at any time
is given by

seΛts
E

¯ sF eΛtF−"s
#
¯ sFdiag ²eλ

"t, eλ
#t,…, eλ

Nt´F−"s
#
. (2.21)

For any time, τ, the energy norm given by (2.21) corresponds to a unique initial
condition which we call the optimal perturbation. No other initial condition can result
in a larger energy norm at t¯ τ ; however, the optimal perturbation may either grow
or decay when t" τ. The locus of energy norms from a range of τ values defines the
boundary of possible energy growth from arbitrary initial conditions of unit energy.

According to (2.21) we find the energy norm of the perturbation by calculating the
2-norm of the diagonal growth matrix scaled by the matrix F. The 2-norm of a matrix
is its principal singular value (Golub & van Loan 1983). The optimal initial condition
is related to the right-hand principal singular vector as follows. The SVD of the energy
growth operator in (2.21) is

F eΛtF−"¯USV†, (2.22)

where U and V are unitary matrices and S is the diagonal matrix of singular values.
The principal singular value is S

""
¯ s

"
, and the principal left- and right-hand singular

vectors are the first columns of U and V, respectively, u
"
and �

"
. Thus, the relationship

between s
"
, u

"
and �

"
is

F eΛtF−"�
"
¯ s

"
u
"
. (2.23)

Equation (2.23) shows that the energy growth operator maps the vector �
"
onto the

output vector u
"
and amplifies it by the factor s

"
. The optimal initial condition, �

"
, can
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be related to the eigenfunction expansion coefficients by comparing (2.20) and (2.23)
to get

k
!
¯F−"�

"
. (2.24)

2.5. Numerical method

A solution for the optimal perturbation requires a solution to the eigenvalue problem
(2.4)–(2.7) which is then used to construct the matrix M (2.15) and its square-root, F,
from the normalized eigenfunctions and the matrix exp (Λt) from the eigenvalues. The
spectral}Galerkin method described in Spalart, Moser & Rogers (1991) is used to
discretize the spatial terms in these equations. The non-divergent spectral basis
functions are linear combinations of Jacobi polynomials in the variable exp (®z}z

!
)

that exactly satisfy the homogeneous boundary conditions at z¯ 0 and as zU¢. The
inner products in the Galerkin method are solved using Gaussian quadrature. The
parameter z

!
controls the height below which the basis functions have a significant

contribution. Tuning this numerical method requires finding values for z
!
, N

poly

(maximum order of the polynomials in the spectral expansion) and σ
min

(minimum
growth rate of the eigenfunctions included in the eigenfunction expansion (2.9)) that
give sufficiently accurate solutions. The method finds 2(N

poly
­1) eigenvalues in

neutral stratification. Numerical experimentation determined that z
!
¯ 3.1 resulted in

well-converged eigenvalues for the discrete normal modes over a wide range of N
poly

in typical conditions.
This spectral method is very efficient at calculating the discrete normal modes, but

does a much poorer job at resolving the continuous spectrum. This is partly because
the basis functions have little or no resolution above the boundary layer, which is
where the continuous spectrum modes are the most significant, and partly due to the
non-normality of the stability operator. Using the method of Grosch & Salwen (1978),
the phase speed of the continuous spectrum for the neutral barotropic Ekman layer
may be found by solving the following third-order polynomial for χ :

χ9χ#®
(b­αA

#
)#

α#Ro#(b#­α#):¯ 0 (2.25)

in which b is a real parameter that ranges between ®¢ and ­¢. The phase speed of
the continuous spectrum is related to χ by

c¯
iλ

α
¯χ­U¢­

1

iαRe
(b#­α#), (2.26)

where U¢ ¯ lim
zU¢ U(z). In neutrally stratified barotropic conditions and with the

tangential Coriolis force omitted, the continuous spectrum is entirely in the stable half-
plane along two branches centred around ®iαU¢.

Eigenvalues for the typical conditions of α¯ 0.5, ε¯ 20° and Re¯ 500 for neutrally
stratified, barotropic conditions omitting the tangential Coriolis force are shown in
figure 2 for N

poly
¯ 200, 120 and 60. Fourteen discrete normal modes are resolved

when N
poly

¯ 200. They occur in two branches, one that splits off the continuous
spectrum at σE®0.17 and extends towards more negative frequency and larger
growth rates. The unstable eigenvalue represents the inflection-point instability. The
discrete modes on the other branch have small negative real parts and are very close
to the continuous spectrum. These are associated with the second cross-stream
inflection point above the surface in the Ekman spiral. All three spectral resolutions
agree very closely for all of the discrete eigenvalues except for the ones approximately
at ®0.166­0.137i (which is only resolved when N

poly
¯ 200) and ®0.00814­0.169i.
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F 2. (a) Effect of resolution on the eigenvalues for the conditions α¯ 0.5, ε¯ 20°, Re¯ 500,
neutrally stratified, barotropic and no tangential Coriolis force for N

poly
¯ 200 (squares), 120

(triangles) and 60 (circles). Filled symbols are discrete normal modes and hollow symbols are discrete
representations of elements on the continuous spectrum. (b) Expanded view near the continuous
spectrum. In both (a) and (b) the predicted behaviour of the continuous spectrum is plotted as solid
lines. Contours of the ε-pseudospectrum are plotted as dashed lines. In (a) the contours change by
factors of 10 from 10−( (inner) to 10−# (outer). In (b) only the 10−$ and 10−% contours are shown.

These two modes are very close to where the discrete modes approach the continuous
spectrum. The numerical continuous modes agree well with the exact solution when
σ"®0.01 but diverge significantly at lower growth rates.

The non-normality of the Ekman layer stability operator exacerbates the problem of
resolving the continuous spectrum and the discrete normal modes that are near the
separation point. This effect is best understood by analysing the ε-pseudospectrum, an
extension of eigenvalue analysis developed by Trefethen (1992) and Trefethen et al.
(1993) that is useful for describing the behaviour of non-normal operators. Schmid &
Henningson (1994) and Reddy et al. (1993) have applied this technique in
hydrodynamic stability problems to explain the behaviour of the numerical solutions
and as a theoretical tool for exploring the transient growth. An ε-pseudoeigenvalue of
a matrix, C, is the set of complex numbers, z, such that s(zI®C )−"s

E
& ε−". In this case

C is the discrete matrix representation of the operator in (2.18). The spectrum of C
corresponds to the ε-pseudospectrum with ε¯ 0. The ε-pseudospectra are nested
regions in the complex plane. Normal operators have ε-pseudospectrum contours that
form circles of radius ε around the eigenvalues. Contours of the ε-pseudospectrum
calculated with N

poly
¯ 200 are included in figure 2. The high sensitivity to small errors

is apparent where the main branch of discrete eigenvalues separates from the
continuous spectrum. The eigenfunctions corresponding to these eigenvalues are nearly
parallel. This non-normality of the operator contributes to the numerical error in
resolving the continuous spectrum and the nearby discrete modes.

To determine N
poly

and σ
min

the solutions to the maximum energy growth equation
(2.21) were calculated for different time intervals, τ, over a wide range of N

poly
and

σ
min

. The energy norm calculation must include all of the resolved discrete normal
modes in order to converge. When σ

min
is about twice the growth rate where the

discrete modes separate from the continuous spectrum (σ
min

¯®0.4 for the conditions
in figure 2) the energy norms agree to a relative error of about 0.01% for N

poly
ranging
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between 40 and 200. The number of eigenfunctions, N, included in the expansion (2.9)
is slightly greater than N

poly
, about half the total number found. Since the operations

to set up the matrices and to find the SVD or O(N #) and O(N $) this is a substantial
reduction in computer time.

The serious question remains of whether or not the spectral model’s representation
of the continuous spectrum modes is adequate. As expected from figure 2 the largest
absolute values of the expansion coefficients in the optimal initial condition (2.24) come
from the modes nearest to the point where the discrete modes separate from the
continuous spectrum and it is the loss of cancellation between these modes that leads
to the transient growth. The absolute values of the expansion coefficients for the
discrete modes generally stand out clearly from the contributions from the continuous
spectrum. These results suggest that good resolution of the discrete normal modes is
necessary but that resolving the continuous spectrum is not critical in calculating the
transient growth. This would be expected on physical grounds since the continuous
spectrum is required mathematically to represent the susceptibility of the PBL to
perturbations above the boundary layer, whereas we are concerned with perturbations
that grow within the PBL. These perturbations should be concentrated near the surface
in order to extract energy from the high-shear region.

To verify this, a second spectral}Galerkin numerical model was constructed that
uses linear combinations of Chebyshev polynomials as basis functions that exactly
satisfy the continuity equation and the boundary condition at z¯ 0 (Leibovich & Lele
1985). These polynomials also satisfy the condition that all perturbations vanish at a
finite height, z

top
, above the surface. Good results were found when z

top
¯ 40.

Compared to the Spalart et al. (1991) method, about twice as many polynomials must
be included to converge the discrete normal modes to the same precision. Because these
basis functions have equal resolution in the lower and upper halves of the domain, the
numerical and theoretical continuous spectra agree to lower growth rates using this
method as compared to the Spalart et al. (1991) method. However, most of the
continuous spectrum modes that are found numerically have high growth rates so the
number of eigenfunctions that must be included in (2.9) is quite large. The calculated
energy norms using the Leibovich & Lele (1985) method agree well with the Spalart et
al. (1991) method, but take significantly more computer time to calculate.

All calculations below were performed in 64-bit precision with N
poly

¯ 80, z
!
¯ 3.1

and with σ
min

set approximately to twice the growth rate where the discrete modes
separate from the continuous spectrum. The linear algebra calculations were performed
using  (Anderson et al. 1992) and  (1992) routines.

3. Structure of the optimal Ekman layer perturbations

We examine the typical condition of Re¯ 500 and omit the tangential Coriolis force.
Results for other Re are qualitatively similar. Interpreting these results can be
simplified by choosing magnitudes for G, δ and K that are characteristic of the PBL.
For the typical midlatitude value of f¯ 10% s−", one non-dimensional time unit is equal
to 40 s. If we further assume that δ¯ 320 m, then G¯ 8 m s−" and K¯ 5 m# s−". We
first discuss the wavenumber and orientation angle dependence and the size of the
optimal perturbations and then examine the evolution of their shapes.

3.1. Optimal perturbation dependence on wa�enumber and orientation

The dependence of the linear (normal mode) instability growth rate on α and ε is shown
in figure 3. The most unstable discrete normal mode occurs at α¯ 0.5 and ε¯ 17° and
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F 4. Eigenfunction corresponding to the most unstable normal mode for Re¯ 500, α¯ 0.5,
ε¯ 17°. (a) Streamfunction, ψ ; (b) downstream velocity, �. The eigenfunction has been normalized to
have unit energy norm.

has a growth rate of about 0.024 which corresponds to an e-folding time of about
28 min. Similar results are found for most high Re ; e.g. when Re¯ 1000, the growth
rate is about 0.028, α remains at 0.5 and ε¯ 16°. Typical roll perturbation velocities
are on the order of 1 m s−" so an estimate of the eddy turnover time of a PBL roll is
20–50 min (30–75 non-dimensional time units). Thus, the linear instability e-folding
time and PBL roll turnover times are quite similar. The eigenfunction for the most
unstable discrete normal mode is shown in figure 4.

The maximum possible energy norm as a function of α and ε is plotted in figure 5
for τ¯ 15, 25, 50 and 100, where τ is the time for which the perturbation is optimal.
Similar calculations were performed for a range of τ and the results are summarized in
table 1(a). Additional results for Re¯ 150 and 1000 are given in tables 1(b) and 1(c).
The τ¯ 100 optimal energy norm contours are similar to the linear growth rate
contours of figure 3 and the maximum occurs in the region where the system is linearly
unstable. The τ¯ 50 maximum also occurs in the region where the system is linearly
unstable, but the contours do not have the same shape as in figure 3. The τ¯ 15 and



110 R. C. Foster

–80
–60

–40

–20
0 20

40

60
80

2112
α α

ε
(deg.)

2
3

4

5
6

3
2

–80
–60

–40

–20
0 20

40

60
80

2112
α α

ε
(deg.)

ε
(deg.)4

3
4

5

6

3

2

(a) (b)

7

8 9

–80
–60

–40

–20
0 20

40
60

80

2112
α α

ε
(deg.)

2

6

8

4

2

–80
–60

–40

–20
0 20

40

60
80

11
α α

ε
(deg.)

ε
(deg.)

105

15

(c) (d )
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25 energy growth occurs over a wider range of wavenumbers and orientation angles
and the peak energy norms occur at α¯ 1.700 and ε¯ 29.5° and α¯ 1.085 and ε¯
25.3° respectively, conditions where the system is linearly stable.

The change in wavenumber and orientation angle for the optimal perturbations and
the corresponding maximum energy norms are shown in figure 6. The wavelength and
orientation of the optimal perturbations asymptote slowly to those of the normal-mode
instability at the longer time intervals (τ" 30). Smaller-scale perturbations that are
oriented at larger angles to the surface isobars can extract energy from the mean flow
when τ! 30 although this growth is evanescent. These evanescent instabilities have not
been previously identified as solutions to the Ekman layer perturbation equations.

The individual energy growth rate curves for the optimal non-modal perturbations
as functions of time for τ¯ 5, 10, 15 and 25 – all with wavenumbers greater than one
– continue to increase for a short time after their respective τ values before eventually
decaying. The individual growth rates for τ¯ 35, 50 and 75 asymptotically grow at the
different growth rates of the unstable normal modes for their respective wavenumbers
and orientation angles.

Included on figure 6(c) is the maximum possible energy growth corresponding to
non-nodal perturbations with the same wavenumber and orientation angle as the
linearly most unstable mode. This curve remains below the optimal energy growth
curve out to τ¯ 500, although the two curves must coincide as τU¢. The energy
norms of the overall optimal perturbations are no more than a factor of 2 larger than
the optimal perturbations constrained to α¯ 0.5, ε¯ 17°. All optimal perturbations
with these α and ε project onto the unstable normal mode and so they grow
asymptotically at its growth rate. All of these perturbations begin to be dominated by
the unstable normal mode when t"C 40 (the reciprocal of its growth rate). At later
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τ α
c

ε
c

³0.1 deg. Energy norm
Growth rate,

unstable DNM Energy norm

(a) ³0.005 α¯ 0.5, ε¯ 17°
5 3.445 39.2 2.97874 — 1.55508

10 2.305 33.8 4.93420 — 2.27228
15 1.700 29.5 6.60247 — 3.13364
25 1.085 25.3 9.60176 — 5.34806
35 0.850 22.9 12.6456 0.00280876 8.29071
50 0.695 20.7 17.8085 0.01733662 14.0031
75 0.605 19.3 30.1910 0.02206721 27.0394

100 0.580 18.5 53.0331 0.02295095 48.6338
125 0.560 18.1 95.3022 0.02343000 88.6443
150 0.550 17.8 171.580 0.02362438 161.986
200 0.540 17.5 561.257 0.02377725 537.218
250 0.530 17.4 1848.85 0.02387968 1783.32
300 0.525 17.3 6106.30 0.02392098 5918.83
400 0.520 17.2 66882.4 0.02395334 65203.5
500 0.520 17.1 734009 0.02395633 718297

(b) ³0.005 α¯ 0.54, ε¯ 9.7°
5 2.12 20.5 2.03439 — 1.43296

10 1.555 20.5 2.89329 — 1.92278
15 1.23 18 3.55980 — 2.43821
20 1.03 15.5 4.09629 — 2.97279
25 0.895 14 4.54591 — 3.51778
30 0.805 12.5 4.93363 — 4.05886
35 0.745 11.5 5.27575 0.0022817 4.57993
60 0.620 9.4 6.12599 0.0068217 5.90277
75 0.530 7.6 7.26428 0.0075542 7.22897

100 0.505 7.5 8.29903 0.0074165 8.25995

(c) ³0.025 α¯ 0.5, ε¯ 16°
5 4.475 46.2 3.57837 — 1.60864

10 2.91 39.5 6.28062 — 2.41380
15 2.06 34.5 8.62217 — 3.39657
20 1.54 31.5 10.7672 — 4.58141
25 1.24 29.5 12.9192 — 6.00634
35 0.92 27.0 17.6364 — 9.71165
50 0.73 24.5 26.3732 0.016040 17.7529
75 0.62 22.0 49.0778 0.024547 39.3197

100 0.59 20.5 93.4781 0.026195 78.6567
125 0.57 20.0 182.727 0.026852 156.927

T 1. Dependence of the optimal initial condition on wavenumber, α, and orientation angle, ε, as
a function of time interval, τ, in neutral stratification and barotropic conditions. The energy norm for
each optimal is given in the fourth column, the growth rate of the unstable discrete normal mode for
the growing perturbations in the fifth column, and the energy norm for optimal non-modal
perturbations constrained to conditions of the most unstable normal mode in the sixth column.
(a) Re¯ 500, (b) Re¯ 150, (c) Re¯ 1000.

times their spatial structure is indistinguishable from the normal mode (figure 4). The
straight line on figure 6(c) corresponds to the energy growth of an initial perturbation
of unit energy entirely in the most unstable normal mode. Asymptotically it is about
a factor of 5 smaller than the maximum possible energy growth of non-modal
perturbations with the same α and ε or the overall optimal perturbations.
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of the most unstable discrete normal mode. Included on (c) is the maximum possible energy growth
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Structure of optimal Ekman layer perturbations 113

4

2

0

4

2

0

4

2

0

4

2

0
0 2 4 6 8 10 12

(d )

(c)

(b)

(a)

Z

Z

Z

Z

X

Max:0.26, Norm:1

Max:0.51, Norm:2.06

Max:0.83, Norm: 6.6

Max:0.37, Norm: 6.32

F 7. Contours of the streamfunction in the plane normal to the roll axis for the τ¯ 15 optimal
perturbation at (a) t¯ 0, (b) t¯ 5, (c) t¯ 15, and (d ) t¯ 25. The wavenumber is 1.700 and the
orientation angle is 29.5° from the surface isobars. The contour interval is 0.1 for all times. Solid
contours are positive values and dashed contours are negative. The heavy solid lines mark the zero
contour.

3.2. E�olution of the optimal perturbations

The evolution of the perturbations is very similar for all of the evanescent instabilities
(τ! 30) and for the growing instabilities (τ" 30). We will focus on the τ¯ 15 optimal
perturbation as an example of an evanescent instability and the τ¯ 75 optimal as a
typical growing instability. The wavelength of the τ¯ 75 instability is about 2.8 times
larger than the τ¯ 15 instability and is oriented at an angle of 19.3° from the surface
isobars compared to 29.5° for the τ¯ 15 perturbation.

3.2.1. E�anescent instability : τ¯ 15

The overturning (u,w) roll motion is best visualized using contour plots of the
streamfunction in the (x, z)-plane normal to the roll axis (figure 7). The initial
orientation of the streamfunction is mostly tilted to the right except below zC 0.5
where it tilts to the left. The perturbation is confined below zC 1.5 which is where the
Ekman layer shear is greatest. This configuration is always against the mean cross-
stream shear (figure 1). As it develops, the streamfunction is advected by the mean
Ekman layer flow until it is essentially vertically oriented at t¯ 15. At this time the
maximum amplitude of the streamfunction has increased by a factor of 3.2 from the
initial condition and the streamfunction extends almost twice as high from the surface.
The energy norm of the instability continues to increase beyond this time, reaching a
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(d ) 1. Solid contours are positive values and dashed contours are negative. The heavy solid lines mark
the zero contour.

maximum of 7.23 at t¯ 20. The continued advection by the mean flow ultimately
orients the streamfunction mainly along the mean shear by t¯ 25. At this time the
maximum amplitude of the streamfunction is only 40% greater than its initial value.

The axial (�) component of the perturbation follows a strikingly different evolution.
Figure 8 shows contours of � in the plane normal to the rolls. Initially there is almost
no axial perturbation velocity. However, it is able to exploit the large downstream
near-surface mean shear quite effectively so that by t¯ 5 the maximum velocity has
increased by a factor of 16. As this velocity increases in magnitude the mean cross-
stream flow tilts the �-velocity contours along the mean cross-stream shear. Unlike the
overturning flow, the axial perturbation velocity has not yet reached its maximum by
t¯ 25 and remains below z¯ 2 throughout its evolution.

3.2.2. Growing instability : τ¯ 75

Qualitatively, the early development of the growing instabilities is very similar to
that of the evanescent perturbations. The streamfunction is mostly titled against the
mean cross-stream shear at t¯ 0 and is below zC 3 (figure 9). As it evolves, the
streamfunction is sheared by the mean cross-stream flow until its orientation is more
upright by t¯ 25. However, the contribution to the perturbation from the unstable
normal mode begins to dominate by tC 45 and the perturbation is indistinguishable
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(d ) 1. Solid contours are positive values and dashed contours are negative. The heavy solid lines mark
the zero contour.

from the pure normal mode at t¯ 75. Because of this, the streamfunctions for the
growing instabilities never tilt along the mean cross-stream shear. Once in the normal-
mode shape, the overturning motion extends vertically to zC 6.

The axial perturbation velocity is shown in figure 10. As for the τ¯ 15 optimal
perturbation, it is initially almost non-existent, but increases by a factor of 10 in only
5 time units. The mean cross-stream shear tilts the axial velocity towards the left as the
perturbation evolves towards its final normal-mode shape which is roughly aligned
with the mean cross-stream flow. At all times the perturbation axial velocity is confined
below zC 2.
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mark the zero contour.

4. Energetics of the non-modal perturbations

The kinetic energy budget of these linear instabilities can be usefully separated into
the contributions from the overturning (OT) and the downstream (DS) motions. These
two budgets are linked through the Coriolis redistribution term which, at Re¯ 500, is
much weaker than all of the other terms in the budget. The two kinetic energy budgets
are
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where the averages are taken over a wavelength of the perturbation. The first two terms
on the right-hand sides of (4.1)–(4.2) are the shear production and Coriolis
redistribution terms and the last two terms are the diffusion and dissipation terms. The
overturning motions are coupled through the perturbation pressure, whose net effect
appears as a vertical pressure diffusion term in (4.1). All of the terms in these budgets
are calculated directly from the spectral solution as functions of time and height.

While the vertical energy budget profiles provide insight into the physical process
that are affecting the perturbations at any given time, when the budget terms are
integrated over all z, we get a clearer picture of how the fluxes from each term
contribute to the growth or decay of the instability as a function of time. The integrals
of the pressure transport and diffusion terms vanish due to the homogenous boundary
conditions. These results are shown in figure 11 for the optimal perturbations for τ¯
15 and 75.

4.1. E�anescent instability : τ¯ 15

The initial OT shear production is positive at all heights with a maximum near z¯ 1.
At this height the diffusion, pressure diffusion and dissipation largely balance the shear
production and the OT kinetic energy growth rate is slightly negative. The diffusion
terms transport the energy due to the shear production away from this level and act as
energy sources below zC 0.5 and above zC 1 resulting in a net positive OT kinetic
energy growth. While in the growing phase as mean advection and pressure diffusion
tilt the streamfunction towards a more upright orientation the OT dissipation and
diffusion terms become less important at mid-levels and are largest near the surface.
The OT shear production at mid-levels remains relatively large. It is offset partially by
the pressure diffusion term, but the OT kinetic energy growth rate is still significant.
The pressure diffusion continues to transport the energy gained from shear production
at mid-levels to the upper and lower layers in the PBL. By t¯ 15, the OT shear
production is mostly positive below zC 1 and negative above so that the total
contribution is near zero. The OT dissipation term remains significant and the kinetic
energy growth rate turns negative. At later times, while the streamfunction is decaying
and is aligned mainly along the mean shear, the OT shear production is mostly
negative ; OT kinetic energy is returning to the mean flow.

Initially the DS shear production is the only relatively large right-hand-side budget
term and the main balance is between it and the DS kinetic energy growth rate. This
explains the rapid initial growth of the DS velocity. By t¯ 5, all terms in the DS energy
budget greatly exceed those from the OT budget. The DS dissipation and diffusion
terms remain almost negligible compared to the shear production so the DS kinetic
energy growth rate remains quite large. The DS dissipation term grows steadily and by
t¯ 15 is a significant contribution to the budget with a maximum at zC 1. By t¯ 25,
the DS dissipation has increased sufficiently that it is the dominant term in the budget.
The DS shear production is negative near the surface and positive above zC 0.5. At
this time both the OT and DS kinetic energy growth rates are negative and the
instability is decaying.

In general, the OT kinetic energy growth rate in the evanescent instabilities begins
to decay before the time for which the perturbation is an optimal. The OT component
of the growth rate is usually negative when t¯ τ and the shear production turns
negative soon after. The DS shear production remains mostly positive for t" τ. The
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F 11. Vertically integrated kinetic energy budget terms as a function of time for the (a) τ¯ 15
and (b) τ¯ 75 optimal perturbations. The Coriolis terms cancel between the overturning (OT) and
downstream (DS) budget terms and are omitted for clarity. The plotted terms are: energy growth,
solid ; shear production, dashed; dissipation, dash-dot.

change in sign of the DS growth rate beyond t¯ τ is due to the eventual domination
of the dissipation over the shear production.

4.2. Growing instability : τ¯ 75

The initial OT kinetic energy budget for the τ¯ 75 optimal perturbation is very similar
to that for τ¯ 15. In contrast the DS kinetic energy growth rate is initially negative
near the surface and positive above. By t¯ 5 the DS shear production is comparable
to that of the OT motion. These budgets develop in a manner similar to those of the
evanescent instabilities until the contribution of the unstable normal mode begins to
dominate. Although the normal-mode instability is much less efficient than the optimal
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perturbation at extracting energy from the mean flow at early times, its modal shape
is quite effective at maximizing the difference between shear production and dissipation
once the transient growth phase has passed. This is the case by t" 50. Both the DS and
OT shear production rates are positive at all heights while the dissipation rates remain
relatively smaller.

5. Discussion

Neutral stratification allows significant simplifications and provides a good base
from which more elaborate studies may be performed. Insight into the dynamics of
PBL flows that are of practical interest can be obtained from the current results. For
example, the polar PBL is often neutrally stratified and the PBL over the oceans is
generally near-neutrally stratified (slightly unstable). Data are scarce in both of these
regions and PBL parameterizations are heavily relied upon to provide boundary layer
winds and fluxes. Improvement of these parameterizations is a priority in both
operational and climatological research. However, the PBL is very complex and a more
general analysis could include, for example, the effects of surface heat fluxes, variable
stratification and baroclinic forcing from large-scale horizontal temperature gradients.

Many numerical modellers have searched for Ekman layer rolls in three-dimensional
simulations of the PBL (e.g. Deardorff 1972; Mason and Thomson, 1987; Coleman,
Ferziger & Spalart 1992, 1994; Chlond 1992; Moeng & Sullivan 1994). It is very
difficult to determine eddy Reynolds numbers of LES calculations equivalent to the
definition used in this paper although they are assumed to be in the range from 300 to
1000. The turbulent eddy structure and flux profiles are dependent on the resolution
and domain sizes (which are at most marginally capable of capturing the PBL rolls) so
LES results cannot be considered conclusive. In general, the neutrally stratified
calculations do not generate rolls, although they frequently develop near-surface
transient streaks or a statistical ‘ stretching’ of the near-surface longitudinal eddies.
Rolls are typically realized when a moderate amount of surface heating is included. The
contention is that the purely shear-induced modal instability produces only a very
weak finite perturbation that is strengthened by buoyant forcing and then organizes the
turbulent eddies.

Deardorff (1972) finds transient near-surface streaks in his neutral LES simulations
whose structure does not agree with the predictions of roll characteristics based on
normal-mode calculations. The lifetime of a typical streak is 0.1 to 0.2 f−". Rolls are
found in slightly and in moderately unstable stratification with wavelengths about 1.5
to 2 times those of the streaks. Mason & Thomson (1987) do not find rolls in any of
their neutrally stratified LES simulations. However, they do find that the turbulent
eddies near the surface, whose scale and orientation varied with resolution and domain
size, are elongated in the direction of the mean shear. Coleman et al. (1992, 1994) do
not find rolls in their DNS simulations of the neutrally stratified Ekman layer at Re¯
400, but do simulate them when a moderate amount of surface heating is included. The
neutrally stratified case shows elongation of the near-surface eddies. Chlond (1992)
performs an LES simulation of a cold air outbreak. In this case surface heat fluxes are
important and the boundary layer deepens during the simulation. Early in the
simulation he finds small-scale rolls that last about an hour before breaking up. Later
on the flow reorganizes into more standard PBL rolls. The evanescent rolls are at an
angle of about 50° to the geostrophic wind while those that appear later on are oriented
approximately along the geostrophic wind. The ratio of the roll wavelength to PBL
depth is 2.6 for the evanescent rolls and 4 for the later rolls. Moeng & Sullivan (1994)
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generate small-scale transient streaks oriented at about 30° to the geostrophic wind in
their neutrally stratified LES calculation. In slightly unstable stratification, they find
organized roll eddies aligned along the geostrophic wind. The wavelength of the
equilibrium rolls is about three times that of the streaks.

These numerical results show that evanescent non-model perturbations appear in
numerical simulations of the PBL. None of the LES calculations start from a pure
Ekman mean flow, so only a qualitative comparison is possible. The data in table 1
show that the maximum relative increase in energy norm between the optimal
perturbation and the optimal perturbation constrained to project onto the most
unstable normal mode occurs for τ¯ 10. The orientation of these perturbations from
geostrophic (Re¯ 150, 500, 1000) is (20°, 34°, 40°) and the wavelength is (2.9, 4.6, 5.8)
times smaller than the predicted roll wavelength. The approximate durations of these
optimal perturbations are (0.4, 0.12, 0.06) f−". These characteristics qualitatively agree
with the characteristics of the streaks in the numerical simulations.

The origin and dynamics of near-wall streaks is a classic problem in fluid mechanics
and many different theories have been proposed. Benney & Gustavsson (1981) show
that significant transient growth can occur for three-dimensional weakly nonlinear
instabilities for which the eigenvalues of the vertical velocity and normal vorticity
modes are equal (resonance). Butler & Farrell (1992), Henningson & Schmid (1992)
and Reddy & Henningson (1993) show that exact or near resonance is not necessary
to generate transient streaks. Comparable energy growth to that found for resonant
conditions is found for linear optimal perturbations at neighbouring parameter values
for which the resonance mechanism is inoperative. Normal-mode instabilities can often
achieve unstable equilibrium or quasi-equilibrium states at subcritical Re. This periodic
mean flow can then be unstable to three-dimensional secondary instabilities with large
growth rates (Orszag & Patera 1983). Butler & Farrell (1994) show that two-
dimensional optimal perturbations grow rapidly via linear down-gradient transport of
horizontal momentum to reach quasi-equilibrium states more rapidly and with much
lower initial energy than the normal modes used in Orszag & Patera (1983). These
quasi-equilibria meet a criterion for secondary instability.

Linear mechanisms are as necessary as nonlinear effects to perturbation growth. This
has been shown using the Reynolds–Orr equation by Reddy & Henningson (1993),
Schmid & Henningson (1994) and Henningson (1996). Hamilton, Kim & Walefe (1995)
propose a cycle in which advection of mean momentum by streamwise vortices
generates near-surface streaks. These streaks break down due to secondary instability.
During this breakdown, nonlinear effects couple energy into linear instability modes in
the form of streamwise vortices completing the cycle. Schmid & Henningson (1992)
demonstrate that nonlinear effects couple energy into certain modes which grow
rapidly through linear mechanisms. This linear growth is limited by nonlinear effects,
including mean flow modification. Butler & Farrell (1994) find a similar reduction in
the energy growth of optimal perturbations as they reach finite amplitude. Walefe
(1995) has argued that this nonlinear reduction in energy growth calls into question the
importance of optimal perturbations. Henningson (1996) points out that the nonlinear
reduction is like that experienced by normal modes as they approach equilibrium states
(e.g. Herbert 1983) and that it does not prohibit the initially linear instability from
transferring energy into other scales or from developing secondary instability. Butler
& Farrell (1993) demonstrate that the transient streak spacing in wall-bounded
turbulent flows is consistent with the optimal perturbations that experience the
maximum growth over an eddy turnover time.

The fact that the optimal perturbation analysis predicts a wide variety of large-scale
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instabilities, both evanescent and growing, in addition to the normal modes associated
with PBL rolls is the important result of this study. That the structure and evolution
of the evanescent optimal perturbations are similar to the LES streaks is significant.
The evanescent optimal perturbations could generate, through nonlinear effects not
calculated in this model, mean flow modifications in the form of transient streaks with
associated non-local momentum transport. Such effects are not included in the single-
point closure PBL models currently in use in large-scale atmospheric models. It is
possible that these nonlinear streaks could also preclude or inhibit the development of
equilibrium PBL rolls. However, this hypothesis needs further investigation.

6. Conclusions

The non-modal analyses show that both evanescent and growing optimal
perturbations can form in the Ekman layer. These optimal perturbations consist of a
near-surface vortex with very weak axial velocity. Because the dissipation in the axial
velocity component is initially quite small, the downstream velocity increases rapidly
and the perturbation is transformed into a near-surface streak with weaker overturning
flow. The important difference between the evanescent and growing perturbations is
whether or not they have an initial projection onto an unstable normal mode. The
evanescent perturbations are of smaller scale and are oriented at larger angles to the
surface isobars then the growing instabilities. The evanescent perturbations cause the
maximum possible energy growth over shorter time intervals and require a more rapid
initial energy growth. Thus, they are concentrated in the high-shear region near the
boundary and are consequently of smaller scale. They are oriented at larger angles to
the surface isobars because there is more cross-stream shear for the overturning flow
to exploit. The scale, orientation and duration of the evanescent optimal perturbations
are in broad agreement with those of the near-surface streaks often found in LES
simulations of the neutrally stratified PBL. In these simulations equilibrium PBL rolls
are not realized even though the nonlinear stability theory (Foster 1996) predicts they
should. There is a strong possibility that the LES streaks are associated with non-
modal perturbations and that these perturbations preclude the development of rolls
from the normal modes in these simulations.
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